《机电工程》杂志,月刊( 详细... )
中国标准连续出版物号: ISSN 1001-4551 CN 33-1088/TH
主办单位:浙江省机电集团有限公司
浙江大学
主编:陈 晓
副 主 编:唐任仲、罗向阳(执行主编)
总 经 理:罗向阳
出 版:浙江《机电工程》杂志社有限公司
地 址:杭州市上城区延安路95号浙江省机电集团大楼二楼211、212室
电话Tel:+86-571-87041360、87239525
E-mail:meem_contribute@163.com
国外发行:中国国际图书贸易总公司
订阅:全国各地邮局 国外代号:M3135
国内发行:浙江省报刊发行局
邮发代号:32-68
广告发布登记证:杭上市管广发G-001号
在线杂志 |
当前位置: 机电工程 >>在线杂志 |
基于遗传算法优化灰色神经网络 的机床主轴热误差建模研究*
作者:郑金勇,刘保国,冯伟 日期:2019-06-25/span> 浏览:2422 查看PDF文档
基于遗传算法优化灰色神经网络的机床主轴热误差建模研究*
摘要:针对机床主轴热性能对加工精度产生影响的问题,对机床主轴热误差建模方向进行了试验研究。以数控磨床主轴为研究对象,通过热特性试验获得了阶梯转速下的温度变化数据和热误差数据,对温度数据进行了模糊聚类分组,并采用相关系数法选出了温度敏感测点;通过对灰色神经网络初始参数进行优化,建立了遗传算法(GA)优化的灰色神经网络热误差预测模型;在该模型中,以灰色神经网络的预测输出和实际值的绝对误差作为遗传算法适应度函数,以平均相对误差作为预测模型的评价标准,并与灰色神经网络、BP神经网络预测结果进行了对比。研究结果表明:该预测模型具有更高的预测精度,通过GA对灰色神经网络的初始参数进行优化,可有效地提高网络的预测精度,更好地用于热误差补偿系统。
关键词:数控机床;热误差;灰色神经网络;遗传算法;模糊聚类分组中图分类号:TH161;TG580 文献标志码:A 文章编号:1001-4551(2019)06-0602-06
本文引用格式:
郑金勇,刘保国,冯伟.基于遗传算法优化灰色神经网络的机床主轴热误差建模研究[J].机电工程,2019,36(6):602-607.
ZHENG Jinyong, LIU Baoguo, FENG Wei. Machine tool spindle thermal error modeling based on genetic algorithm optimization grey neural network[J].Journal of Mechanical & Electrical Engineering, 2019,36(6):602-607.
《机电工程》杂志:http://www.meem.com.cn
友情链接