《机电工程》杂志,月刊( 详细... )

中国标准连续出版物号 ISSN 1001-4551 CN 33-1088/TH
主办单位浙江省机电集团有限公司
浙江大学
主编陈 晓
副 主 编唐任仲、罗向阳(执行主编)
总 经 理罗向阳
出 版浙江《机电工程》杂志社有限公司
地 址杭州市上城区延安路95号浙江省机电集团大楼二楼211、212室
电话Tel+86-571-87041360、87239525
E-mailmeem_contribute@163.com
国外发行中国国际图书贸易总公司
订阅全国各地邮局   国外代号M3135
国内发行浙江省报刊发行局
邮发代号32-68
广告发布登记证:杭上市管广发G-001号

在线杂志

当前位置: 机电工程 >>在线杂志

一种基于LS-SVM与PID复合的逆控制系统

作者:黄银蓉,张绍德,季民 日期:2010-03-26/span> 浏览:4373 查看PDF文档

一种基于LS-SVM与PID复合的逆控制系统

黄银蓉,张绍德,季民
(安徽工业大学 电气信息学院,安徽 马鞍山 243002)

摘要:针对逆系统中非线性逆模型辨识困难的问题,研究了基于最小二乘支持向量机(LS-SVM)的逆模型辨识及控制,并用微粒子群算法(PSO)优化LS-SVM的参数和核函数参数。提出了一种由LS-SVM的逆模型与PID结合的复合控制系统,由LS-SVM辨识非线性系统的逆模型作为前馈控制器,形成直接逆控制。同时,由PID控制器构成反馈控制,克服直接逆控制鲁棒性不强的缺陷。仿真研究结果表明LS-SVM的逆模型辨识能力强,该复合控制系统具有比基于最近邻聚类的RBF神经网络逆控制系统更优的动态跟踪性能,更好的抗干扰能力和鲁棒性。
关键词:逆模型辨识;最小二乘支持向量机;微粒子群算法;逆控制
中图分类号:TP18文献标识码:A文章编号:1001-4551(2010)02-0075-04

A inverse control system based on least squares
support vector machine and PID
HUANG Yin-rong, ZHANG Shao-de, JI Min
(School of Electrical Engineering&Information, Anhui University of Technology, Maanshan 243002, China)
Abstract: Aiming at the problems of the inverse model identification in inverse system method, the realization of inverse system identification and control using least squares support vector machine(LS-SVM) were studied. A methodology, based on particle swarm optimization algorithm(PSO), for parameters selection of least squares support vector machine was proposed. A compound control strategy combing LS-SVM inverse system with PID controller was proposed. LS-SVM was used to identify the inverse model of nonlinear system, and this inverse model was used as feed-forward controller to design direct inverse control. Moreover, PID controller was used to realize feed-back control, which could overcome the limits of direct inverse control in performance and robustness. Simulation results demonstrate that LS-SVM has a good approximate capability for inverse model, and the proposed compound control system has better dynamic track performance, resistance to disturbance of system and robustness than RBF neural network.
Key words:  inverse model identification; least squares support vector machine(LS-SVM); particle swarm optimization algorithm(PSO); inverse control
参考文献(References):
[1]李春文,冯元现.多变量非线性控制的逆系统方法[M].北京:清华大学出版社,1991.
[2]刘士荣,俞金寿.神经模糊逆模PID复合控制在CSTR中的应用[J].控制理论与应用,2001,18(5):769-773.
[3]VAPNIK V N. The Nature of Statistical Learning Theory[M]. 2nd ed. New York: Springer Verlag,1995.
[4]DREZET P M L, HARRISON R F. Support vector machines for system identification[C]//Proc. of UKACC Int. Conf. on Control’98. UK: university of Wales Press,1998:668-692.
[5]SUYKENS J A K, GESTEL T V, BRABANTER J , et al. Least Squares Support Vector Machines [M]. World Scientific,2002.
[6]王宏志,陈帅,侍洪波.基于最小二乘支持向量机和PSO算法的电厂烟气含氧量软测量[J].热力发电,2008,37(3):35-38.
[7]王启付,王战江,王书亭.一种动态改变惯性权重的粒子群优化算法[J].中国机械工程,2005,16(11):945-948.
[8]WANG Hui, PI Dao-ying, SUN You-xian. Online SVM regression algorithmbased adaptive inverse control [J]. Neurocomputing,2007,70(4-6):952-959.

 



友情链接

浙江机械信息网