DOI:10.3969/j.issn.1001-4551.2018.02.008

一种多旋翼无人机三轴稳定云台的设计*

宋 科

(昆明理工大学建筑工程学院,云南昆明650500)

摘要:针对传统无人机稳定云台应用于无人机时重量较大、结构稳定性不佳而难以在低空航拍下获取较高稳定性图像信息的问题, 对云台姿态补偿与位移调节的原理进行了阐述,对云台结构材料的选择、主体结构的设计和装配、云台的承载位置和载荷的施加等 方面进行了研究,以小巧、易装配及轻量化为目标导向,提出了一种以多旋翼无人机为搭载平台的小型三轴对称稳定云台的设计方 案。利用 ANSYS Workbench 有限元分析软件对云台模型进行了静力学载荷校核和动力学模态分析,并提取出了相应的仿真数据。 研究结果表明:该云台的设计在强度、刚度和减震能力上都具有较好的功能性和可靠性,确保了相机在航拍中对位移振动做出补 偿,实现了稳像的功能。

文章编号:1001-4551(2018)02-0153-05

Design of triaxial stabilized platform for multi-rotor UAV

SONG Ke

(Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China)

Abstract: Aiming at the problem that the traditional UVA stabilized platform had higher load and poor structural stability which was difficult to obtain aerial image information with high stability at low altitude, the principle of attitude compensation and displacement regulation on stabilized platform system was expounded, the selection of the material, the design and assembly of the main structure, the loading position and loading application of the stabilized platform were studied. A small three axis symmetrical stabilized platform for Multi-rotor UAV was designed, which had considered the lightweight, easy to assemble and good workability in the goal orientation. Meanwhile, the static and modal analysis of the stabilized platform model was carried out by using the finite element analysis software—ANSYS Workbench, and also the corresponding simulation data were extracted. The results indicate that this design has good function and reliability in strength, stiffness and damping capacity, which can make sure the camera will compensate for the displacement and vibration in aerial photography and realize the function of image stabilization.

Key words: UVA; triaxial stabilized platform; finite element analysis; structural design

0 引 言

近年来,随着飞行器控制技术、微型传感器技术和 高度集成处理器技术的快速发展和推广应用,多旋翼 无人机逐步向高效、多功能化方向发展,因其具有操作 简单方便、易于装配维修和结构简单等特点迅速成为 无人机中的新贵,并广泛应用于航空航海、军事、警用 民用、农林等多个领域^[14]。稳定云台作为无人机平台 上的重要部件,已被世界各国广泛研究与应用。例如, 以色列军方研制的 MOSP 云台系统,英国的 Phoenix 云 台系统,美军"捕食者"战略无人机上装备的"天球"云 台系统等^[5]。稳定云台可搭载多种传感器和光学精

收稿日期:2017-07-04

基金项目:国家自然科学基金资助项目(51479085,11262008)

作者简介:宋 科(1989-),男,云南昆明人,博士研究生,主要从事流体机械及工程方面的研究。E-mail: songkesk@ sina. com

密仪器,其主要用于民用航拍、地形测绘、反恐侦察、目标跟踪识别等用途^[6]。然而,随着多旋翼无人机的快速发展和对其功能要求的不断提高,一些传统的稳定 云台已经不能满足其发展的需要。首先,多旋翼无人 机在高速移动或者转向的情况下,机身往往受到来自 外部环境产生的振动和偏移,从而造成航拍图像的不 稳定,画面出现横纹、断层现象甚至偏离拍摄目标。其 次,由于传统云台重量较大且结构稳定性不佳,在对无 人机造成较大负荷的同时也不利于航拍画面质量的 提高。

因此,为了更好地实现对航拍目标的不间断、高质量的实时视频画面传输,本研究借助数字化设计技术和计算机仿真技术,以小巧、易装配及轻量化为目标导向设计一款以多旋翼无人机为搭载平台的小型三轴稳定云台,并对其结构进行静力学校核和动力学分析。

1 云台的结构设计

无人机稳定云台为了满足功能需求应该具有以下 两个方面的特点:首先,根据遥控信号及时调整系统姿态。其次,处理并应对来自无人机飞行过程中产生的 振动并随即做出位移补偿以便达到稳像的功能。

云台控制系统主要由主控器电路板、MPU6050 传 感器、电机驱动器和直流无刷电机组成。主控器电路 板安装在悬架上负责处理来自三轴的加速度与姿态信 号。首先,在云台工作时受到来自外部环境产生的振 动和偏移时,安装在相机壳体内的 MPU6050 姿态控制 传感器将感知并实时捕捉相机壳体运行过程中产生的 偏移角度和横轴、纵轴、俯仰轴3个坐标轴上的角度偏 移和震动状况,并将相应的角度和加速度信号传递给 主控器电路板^[7],通过主控器电路板中的姿态解算器 模块与 PID 控制器模块的处理,将反馈信号传递给三 轴上的电机驱动器输出 PWM 信号,随即对无刷直流 电机进行横轴、纵轴、俯仰轴上的位移和角度的调整, 以此达到稳像的目的。

具体的控制流程如图1所示。

图1 云台控制系统流程图

为了满足上述要求,云台往往需要一配套的机械

结构来实现其具体的功能。云台结构如图2所示。

图 2 无人机云台结构图

其主要结构设计如下:

(1)相机壳体结构(图2中标号1)。起到保护相机、传感器等电子元件的作用,内部安装微型 CCD 高 清相机来传输高质量的图像信号;

(2)支撑结构(图 2 中标号 2)。与无人机机体直 接连接,作为云台系统的底座,其主要功能是保护主控 器电路板、固定安装俯仰电机和支撑云台的其他零 部件;

(3)减振结构(图2中标号3)。通过柔性结为云 台吸收来自无人机在运行过程中产生的振动;

(4)旋转连接结构(图2中标号4)。为云台提供3个轴方向上旋转支撑和动力,各轴节点上装配有符合规格的微型直流无刷电机以确保云台系统的位移补偿,同时为其余电子元件和无刷电机提供保护。

1.1 云台主体结构的材料选择

除了相机、无刷电机和其他电子元件外,云台的主体结构还需要大量的支撑零件来进行连接与固定。这些零件通过 Inventor 软件设计出来,之后将通过数控机加工成型,构成云台的主体结构。本研究设计的云台不同结构件共有13件,通过对这些零件的结构和用途的分析来选择适合的材料,材料的性能好坏将直接影响到整个系统的运行。因此,在选择材料的时候应考虑如下几点要求:

(1)材料必须易加工成型,便于装配;

(2) 云台在工作状态下承受交变载荷和随机振动 的多重影响,因此在材料的选择上必须使用比强度较 高的材料,这样既可以满足强度、刚度和耐久度的要 求,同时也满足了云台轻量化的设计要求。

因此,本研究选择铝合金作为云台结构中直接承载零件的材料和起保护作用的相机壳体的材料,而选择 ABS 作为云台结构间接承载和不承载的零件材料,同时选择橡胶作为柔性结减震部分的零件材料。定位轴和滚珠轴承采用定制的2Cr13 专用材料。

3种材料的力学性能如表1所示。 表1 3种材料的力学性能

材料名称	密度/	屈服强度/	弹性模量/	<u>)</u>) (1) (1) (1) (1) (1) (1) (1) (1) (1) (
	$(g. cm^{-3})$	MPa	MPa	伯松叱
铝合金	2.72	255	74 000	0.34
ABS	1.02	75	2 000	0.394
橡胶	0.9	18	7.80	0.47

云台主要结构件材料匹配如表2所示。

表2 零件材料匹配

零件名称	材料名称
顶架	ABS
悬架	Al alloy
悬架上盖	ABS
悬架下盖	ABS
俯仰轴悬臂	Al alloy
俯仰轴悬臂盖	ABS
纵轴旋臂	Al alloy
相机前盖	Al alloy
相机主壳	Al alloy
相机后盖	Al alloy
定位轴	2Cr13
滚珠轴承	2Cr13
柔性结	Rubber

1.2 云台相机壳体结构的设计

相机壳体结构的设计既要考虑实用性,也要考虑 美观性,因此本研究采用球形壳体的设计作为安装 CCD 相机和传感器的载体,避免杂质和灰尘对这些精 密元件的损害。同时,在壳体上预留出一定数量的孔 作为相机 SD 与 HDMI 连线接口以满足航拍、转动、扩 展等要求。壳体内部除了保证相机等元器件的安装 外,还需在横轴方向上安装内置的微型无刷电机以作 为横轴上的动力源。考虑到零件的易加工性,相机壳 体结构分为3 个零件:相机主壳、相机前盖、相机后盖, 前盖部装有树脂镜片。其中后盖与主壳连接方式为螺 钉定位配合,前盖与主体连接方式为粘结剂粘贴。相机 壳体与旋转结构通过壳体两侧的同轴进行定位安装。

1.3 云台旋转连接结构的设计

旋转结构主要零件分别为纵轴和俯仰轴方向上的 悬臂结构和其附属连接盖子。旋转连接结构主要负责 横纵轴与俯仰轴方向上的转动,本研究采用对称双臂 设计以加强云台旋转自稳性,虽然这样设计比传统的 单臂结构重量上略有增加,但这样重量较大的相机及 传感器元器件的载荷就会落在对称的横轴上,这有助 于减小产生的扭矩,提升整个系统的结构稳定性,同时 也降低了无刷电机的补偿能耗,外观上也比单臂结构 更为美观。

1.4 云台支撑结构及减震结构的设计

支撑结构主要零件有连接固定无人机的顶架和安 装固定和保护俯仰电机和主控电路板的悬架及其附属 连接盖子。而减振结构主要起到了吸收来自无人机在 运行过程中产生的振动的作用。本研究采用橡胶制成 的中空柔性结作为云台的阻尼减振器。云台在振动过 程中柔性结将克服振动阻尼通过自身的变形吸能从而 达到减小振动的目的,从而防止云台上其他结构受到 损伤。根据云台的大小选择适合的柔性结安装到顶架 与悬架之间的合适位置。需要注意的是在实际使用过 程中,柔性结在长时间下经过反复形变,容易产生裂 痕。如果不及时更换,裂痕会继续扩展直至完全损坏, 影响到整体系统的安全。因此,为了防止柔性结脱落 或者断裂,需在柔性结的中空位置插入安全销钉(销 钉的长度要大于柔性结的最大拉伸量)。另外,支撑 结构与旋转连接结构通过俯仰电机轴及微型滚针轴承 进行连接。

1.5 云台结构的装配

最后,各零件在 Inventor 中装配完成,在确保装配体各零部件间没有干涉后分别对云台装配体进行重力分析和运动仿真检测。结果表明:云台的设计达到了预想的要求。

云台系统总重约 190 g;俯仰轴最大转动角度 ±30°;横轴最大转动角度 ±45°;纵轴最大转动角度 ±30°。

2 云台的载荷分析

本研究将 Inventor 装配体模型导出为 IGS 文件格 式后,再导入到 ANSYS Workbench 中^[8],按表 2 所示 的材料匹配进行云台各结构件的材料属性赋予。为了 简化计算,笔者将相机壳体结构和部分其他非主要结 构及电子元器件、CCD 相机、电机等重量置换成载荷 以进行分析,忽略定位轴和滚珠轴承对云台结构微小 的影响。由于本研究设计的云台零件具有不规则的外 形,在进行网格划分时采用自适应实体单元进行网格 划分,设置全局网格单元尺寸为2 mm,同时为了尽可 能地提高仿真计算的精度,笔者对云台结构中旋转连 接部分这些可能出现应力集中的部位适当减小网格尺 寸。最后划分完成后的云台模型节点 Nodes 总数为 132 083 个,单元 Elements 总数为 67 416 个。在云台 的载荷设置过程中,除了云台主体结构的自身重量外, 还需在一些关键连接处加载替换后的载荷。本研究在 顶架的4个固定孔轴处(A处)将3个方向的位移自由

度设置为0,模拟顶架与无人机机体的约束固定;在纵轴 旋臂的定位轴上(B处),施加一个沿Y轴向下0.6 N的 作用力,模拟相机壳体、相机、横轴电机和其他电子元 器件所产生的重力;在悬架内侧平面上(C处),施加 一个沿Y轴向下0.4 N的作用力,模拟主控电路板和 俯仰电机所产生的重力;在俯仰轴悬臂的下侧(D 处),施加一个沿Y轴向下0.3 N的作用力,模拟纵轴 电机和传感器所产生的重力;最后在全局坐标系中设 置重力加速度,这将产生一个大小为9.806 65 m/s² 的 加速度,定义其沿Y轴向下模拟云台结构受到的自 重,同时考虑到无人机运行时会产生一定的水平惯性 力,因此假设无人机以10 m/s²的水平加速度飞行,在 全局坐标系中设置一个相应加速度(F处),方向沿Z 轴负方向。

简化后的云台模型有限元网格划分及载荷加载示 意如图 3 所示。

图 3 有限元网格及载荷示意图

云台静力学等效应力和变形如图4所示。

图 4 静力学应力及变形图

结果表明:最大应力发生于旋转结构连接处。其 最大应力为3.34 MPa,该部位材料为铝合金,其屈服 强度极限为255 MPa。可以看出,图4中的最大等效 应力值要远远小于材料的屈服极限值。云台也产生了 微小形变,但对于整个系统而言,0.14 mm 的最大形变 对于三轴稳定平台的正常使用不会产生任何不良影响。

3 云台的模态分析

具有多旋翼电机组的无人机在运行状态下产生的 振动较固定翼无人机要复杂。首先,多旋翼无人机在 运行时直接受到来自各电机所产生的影响,这种影响 也会随着电机数量的增加而变得更复杂,多个电机同 时运行时所产生的振动将直接积累到整个系统上。其 次,各旋翼的转速会存在微小的差别,多旋翼转动时不 能完全抵消各自所产生的扭矩,同时在户外飞行时各 旋翼由于空气来流情况复杂,这也将导致升力不平衡 的现象。所以,多旋翼无人机会同时受到来自自身旋 翼转动所产生的影响和来自外界空气流动的影响。为 了确保所设计的云台能满足复杂振动工况下的要求, 要进行动力学模态分析来确定结构的固有频率和振型 等模态参数^[9]。

在实际情况下,传递给云台的振动频率一般集中 于50 Hz~70 Hz之间^[10-11]。因此,笔者重点分析集中 在这一区间段的模态振型,对云台结构进行六阶模态 分析。云台的六阶模态云图如图5 所示。

(a)一阶二阶振型 $(f_1 = 40$ Hz Max-Deformation1 = 170 mm,

 $f_2 = 42$ Hz Max-Deformation2 = 168 mm)

- (b)三阶四阶振型($f_3 = 84$ Hz Max-Deformation3 = 231 mm,
 - $f_4 = 99$ Hz Max-Deformation4 = 210 mm)

(c)五阶六阶振型($f_5 = 107$ Hz Max-Deformation5 = 241 mm, $f_6 = 142$ Hz Max-Deformation6 = 252 mm) 图 5 云台六阶模态云图

可以看出:一阶、二阶振型是弯曲振型,结构沿纵 轴弯曲,固有频率和最大位移都十分接近。三阶、四阶 也是弯曲振型,但结构沿横轴弯曲。五阶和六阶振型 是扭转振型,结构沿俯仰轴扭转,可以看出结构受到扭 转后变形较大,最大位移均集中在顶架和柔性结处。 同时可以看出:易产生共振的频率范围介于结构的第 二阶与第三阶固有频率之间,超过第三阶后结构的固 有频率都十分远离这一阶段,因此不会产生共振。说 明振动对云台工作不会产生较大的影响,整个设计是 合理可靠的^[12-13]。

为了进一步说明柔性结对云台减震能力的影响, 未使用柔性结的云台固有频率和最大位移如表 3 所示。

模态阶数/	n 固有频率/Hz	最大位移/mm
1	90	255
2	117	248
3	182	299
4	326	408
5	396	375
6	470	445

表 3 未加入柔性结的模态参数

可以看出:未加入柔性结的云台各阶振型频率远 超加入柔性结后的云台频率,每阶模态对应的最大位 移量也相对提高了不少。回顾图 5 的六阶振型图,云 台结构的最大位移处均出现在顶架和柔性结上,而下 方的安装相机和电机的结构未出现较大位移偏移,云 台的稳定性十分良好。由此可以看出,柔性结对云台 整体减振效果起到了关键作用。

4 结束语

本研究使用 Inventor 自主设计了一种多旋翼无人 机三轴稳定云台,并对云台姿态补偿原理和各结构零 部件的设计进行了分析说明,同时通过 ANSYS Workbench 对结构进行了静力学强度刚度校核和动力学模 态分析,得到的相关仿真结果佐证了该设计是合理可 靠的。

由于本设计的云台零部件结构相对比较复杂,具 有不规则外形,加之尺寸较小,在加工上存在一定的难 度。因此在下一阶段,本研究将通过 3D 打印或精密 铸造来搭建实际的云台装配体,之后再通过高性能数 据信号采集仪得到无人机运行过程中云台的真实模态 参数,并与仿真数据进行对比,最大化地降低设计误 差,为后续云台系统的优化升级和减震技术的研究提 供参考。

参考文献(References):

- [1] 王纯阳. 多旋翼无人机用单载荷光电稳定平台结构设计 [D]. 长春:中国科学院长春光学精密机械与物理研究 所,2015.
- [2] 申 斌,吴一波,林冬生.旋翼机的发展与应用[J].科技 传播,2013(23):145-146.
- [3] SAMANO A, CASTRO R, LOZANO R, et al. Modeling and stabilization of a multi-rotor helicopter[J]. Journal of Intelligent & Robotic Systems Theory & Applications, 2013,69(1-4):161-169.
- [4] 王大鹏,王茂森,戴劲松,等.四旋翼飞行器悬停建模及控制[J].兵工自动化,2017,36(5):92-96.
- [5] 成 刚,杨随虎.无人机机载光电系统综述[J].应用光
 学,2005,26(4):14.
- [6] 刘 瑞,蒋 蓁,雷小光.小型机载云台结构设计和分析[J].机电工程,2010,27(2):5-7.
- [7] 王成波,戈振扬,贺 勇,等. 基于 STM32F4 的机载三轴 云台控制器设计[J].中国农机化学报,2016,37(8):171-175.
- [8] 许京荆. ANSYS 13.0 Workbench 数值模拟技术[M]. 北京:中国水利水电出版社,2012.
- [9] 胡海岩,孙久厚. 机械振动与冲击[M]. 北京:航空工业出版社,2002.
- [10] 杨笑天.森林防火小型无人机总体设计与仿真研究 [D].哈尔滨:东北林业大学机电工程学院,2016.
- [11] 刘 峰,高鸿渐,喻 辉,等.基于有限元的四旋翼无人 机碳纤维结构优化设计与固有模态分析[J].玻璃钢/复 合材料,2017(4):17-23.
- [12] 刘 鹏,曾 涛,谢君科,等. 自适应回弹填料密封结构 设计及有限元分析[J]. 流体机械,2015(2):29-31,65.
- [13] 顾根泉. 无人机车载液压弹射系统研究[J]. 液压气动与密封,2016(1):40-44.

[**编辑:**李 辉]

本文引用格式:

宋 科. 一种多旋翼无人机三轴稳定云台的设计[J]. 机电工程,2017,35(2):153-157.

SONG Ke. Design of triaxial stabilized platform for multi-rotor UAV[J]. Journal of Mechanical & Electrical Engineering, 2017,35(2):153-157.